All about Motors

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor protection</td>
<td>8-3</td>
</tr>
<tr>
<td>Notes on engineering</td>
<td>8-15</td>
</tr>
<tr>
<td>Circuit documents</td>
<td>8-19</td>
</tr>
<tr>
<td>Power supply</td>
<td>8-21</td>
</tr>
<tr>
<td>Control circuit supply</td>
<td>8-24</td>
</tr>
<tr>
<td>Contactor markings</td>
<td>8-25</td>
</tr>
<tr>
<td>Direct-on-line start of three-phase motors</td>
<td>8-26</td>
</tr>
<tr>
<td>Control circuit devices for direct-on-line start</td>
<td>8-34</td>
</tr>
<tr>
<td>Star-delta switching of three-phase motors</td>
<td>8-35</td>
</tr>
<tr>
<td>Control circuit devices for star-delta starting</td>
<td>8-45</td>
</tr>
<tr>
<td>Pole-changing motors</td>
<td>8-47</td>
</tr>
<tr>
<td>Motor windings</td>
<td>8-50</td>
</tr>
<tr>
<td>Multi-speed contactors</td>
<td>8-53</td>
</tr>
<tr>
<td>Multi-speed switch for three-phase motors</td>
<td>8-55</td>
</tr>
<tr>
<td>Control circuit devices for multi-speed contactors</td>
<td>8-63</td>
</tr>
<tr>
<td>Multi-speed switch for three-phase motors</td>
<td>8-68</td>
</tr>
<tr>
<td>Three-phase autotransformer starter</td>
<td>8-83</td>
</tr>
<tr>
<td>Three-phase automatic rotor starters</td>
<td>8-88</td>
</tr>
</tbody>
</table>
All about Motors

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching of capacitors</td>
<td>8-92</td>
</tr>
<tr>
<td>Duplex pump control</td>
<td>8-96</td>
</tr>
<tr>
<td>Fully automatic pump control</td>
<td>8-98</td>
</tr>
<tr>
<td>Fully automatic main transfer switch with automatic release</td>
<td>8-102</td>
</tr>
</tbody>
</table>
All about Motors
Motor protection

Selection aids

The Eaton selector slide enables you to determine quickly and reliably which motor starter is the most suitable for the application concerned. For this only the operating voltage, the motor rating, the various short-circuit ratings and coordination types are required.

The selector slide can be used for dimensioning devices with short-circuit coordination types 1 and 2. Standard cable cross-sections and permissible cable lengths are stated for the tripping of protective devices in compliance with standards. They can vary according to the installation requirements. The selector slide has several variants of the movable section with numerical values for DOL and reversing starters or star-delta starters. The selector slide can be obtained free of charge. If you prefer to use the selection aid online, this is available at: www.eaton.com/moeller/support (Online Selection Tools)
Overload relay with reclosing lockout

They should always be used where continuous contact devices (two-wire control) are concerned (e.g. pressure and position switches), to prevent automatic restarting. The reset button can be fitted as an external feature in order to make it accessible to all personnel. Overload relays for example are always supplied with manual reset but can be converted to automatic reset by the user.

Overload relays without reclosing lockout

They can be used only with pulsed contact devices (three-wire control) such as pushbuttons etc., because on these, the cooling of the bimetal strips cannot lead to automatic reconnection.

Special circuitry

Special circuitry such as is found in star-delta switches, individually compensated motors, current transformer-operated overload relays etc. may require that the relay settings deviates from the motor rated operational current.

Frequently recurring operating cycles

It makes motor protection difficult. The relay should be set to higher than rated motor current in view of its shorter time constant. Motors which are rated for a high operating frequency will stand this setting to a certain degree. Although this will not ensure complete protection against overload, it will nevertheless provide adequate protection against non-starting.

Back-up fuses and instantaneous releases

They are needed to protect not only the motor, but also the relay, against the effects of short-circuits. Their maximum rating is shown clearly on every relay and must be adhered to without fail. Higher ratings – chosen for instance according to the cable cross-section – would lead to the destruction of the motor and relay.

The following important questions and answers give a further guide to the behaviour of an installation with motor protection.

To what current must the overload relay properly be set?

To the rated motor current – no higher, no lower. A relay set to too low a figure will prevent the full utilization of the motor; set too high, it will not guarantee full overload protection. If a correctly set relay trips too frequently, then either the load on the motor should be reduced or the motor should be exchanged for a larger one.

When is it right for the overload relay to trip?

Only when the current consumption of the motor increases due to mechanical overloading of the motor, undervoltage or phase failure when the motor is under full load or thereabout, or when the motor fails to start due to a stalled rotor.
When does the overload relay fail to trip in good time although the motor is endangered?

With changes in the motor which do not cause an increase in current consumption: Effects of humidity, reduced cooling due to a reduction in speed or motor dirt, temporary additional external heating of the motor or bearing wear.

What causes destruction of the overload relay?

Destruction will take place only in the event of a short-circuit on the load side of the relay when the back-up fuse is rated too high. In most cases, this will also endanger the contactor and motor. Therefore, always adhere to the maximum fuse rating specified on every relay.

3-pole overload relays should be so connected in the case of single-phase and DC motors so that all three poles of the overload relay carry the current, whether in 1-pole or 2-pole circuits.

1 pole 2 pole

An important characteristic feature of overload relays conforming to IEC/EN 60947-4-1 are the tripping classes (CLASS 10 A, 10, 20, 30). They determine different tripping characteristics for the various starting conditions of motors (normal starting to heavy starting duty).
Pick-up times

Response limits of time-delayed overload relays at all-pole load.

<table>
<thead>
<tr>
<th>Type of overload relay</th>
<th>Multiple of current setting</th>
<th>Reference ambient temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A t > 2 h starting from cold state of relay</td>
<td>B t ≤ 2 h</td>
</tr>
<tr>
<td></td>
<td>10 A 10 20 30</td>
<td>≤ 2</td>
</tr>
</tbody>
</table>

Non-ambient temperature compensated thermal relays and magnetic relays:

| | 1.0 | 1.2 | 1.5 | 7.2 | +40 °C |

Ambient temperature compensated thermal relays:

| | 1.05 | 1.2 | 1.5 | 7.2 | +20 °C |

In the case of thermal overload relays with a current setting range, the response limits must apply equally to the highest and the lowest setting of the associated current.
Response limits of 3-pole thermal overload relays at 2-pole load

<table>
<thead>
<tr>
<th>Type of thermal overload relay</th>
<th>Multiple of current setting</th>
<th>Reference ambient temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>+20 °C</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>+40 °C</td>
</tr>
<tr>
<td>Ambient temperature compensated, without phase failure sensitivity</td>
<td>3 poles 1.0</td>
<td>+20 °C</td>
</tr>
<tr>
<td>Non-ambient temperature compensated, without phase failure sensitivity</td>
<td>3 poles 1.0</td>
<td>+40 °C</td>
</tr>
<tr>
<td>Ambient temperature compensated, with phase failure sensitivity</td>
<td>2 poles 0.9</td>
<td>+20 °C</td>
</tr>
</tbody>
</table>

In the case of thermal overload relays with a current setting range, the response limits must apply equally to the highest and the lowest setting of the associated current.

Overload capacity

Overload relays and releases have heating coils which can be thermally destroyed by overheating. The making and breaking currents of the motor flow in thermal overload relays which are used for motor protection. These currents are between 6 and 12 x I_e (rated operational current), depending on the utilization category and the size of the motor.

The point of destruction depends on the frame size and design. It is usually approximately 12 to 20 x I_e.

Short-circuit strength of the main circuit

With currents that exceed the breaking capacity of the motor starter in relation to the utilization category (EN 60947-1, VDE 0660, Section 102, Table 7), it is permissible for the current flowing during the break time of the protective device to damage the motor starter.

The permissible behaviour of starters under short-circuit conditions is defined in the so-called types of coordination (1 and 2). It is common practice to state in...
Motor protection in special applications

Heavy starting duty
An adequate tripping time is essential in order to allow a motor to start up smoothly. In the majority of cases, overload relays such as motor-protective circuit-breakers PKZ(M) or circuit-breakers NZM can be used. The tripping time can be taken from the tripping characteristics in the main catalogue, Industrial Switchgear.

In the case of especially high-inertia motors, whose run-up time exceeds the tripping delay of the above devices, it would be completely wrong to adjust an overload relay which tripped out before the run-up time expired, to a current level higher than the rated motor current. This would, it is true, solve the starting problem, but the motor would no longer be adequately protected during run. However, there are other solutions to the problem:

Current transformer-operated overload relays ZW7
The ZW7 consists of three special saturable core current transformers, supplying an overload relay Z… It is used principally for medium and large motors.

Up to two times rated operational current I_e, the transformation ratio I_1/I_2 of the saturable core current transformers is practically linear. Within this range it does not differ from the normal overload relay, i.e. it provides normal overload protection during normal operation. However, within the transformer characteristic range ($I > 2 \times I_e$), the secondary current no longer increases proportionally to the primary current.

This non-linear increase in the secondary current produces an extended tripping delay if overcurrents greater than twice rated operational current occur, and hence permits longer start-up times.
Adjusting the current transformer-operated overload relay ZW7 for lower rated motor current
The setting ranges quoted in the main catalogue, Industrial Switchgear, apply when the incoming cable is looped once through the transformer relay.
If the current transformer-operated overload relay ZW7 is required to provide protection to a motor of below 42 A rating (minimum value in the setting range of 42 A to 63 A), the necessary range adjustment is achieved by looping the incomer several times through the aperture in the relay. The change in the rated motor current quoted on the rating plate is inversely proportional to the number of loops.

Example:
With the ZW7-63 relay, which has a setting range from 42 A to 63 A, a rated motor current of 21 A to 31.5 A can be accommodated by looping the leads twice through the relay.

Bridging of motor protection during starting
For small motors the bridging of the motor protection during starting is more economical. Because of the additional parallel contactor, the overload relay does not carry the full current during starting. Only when the motor has reached full speed is the bridging contactor switched off and the full motor current is then carried by the overload relay. Provided it has been set correctly to the rated motor current, this will ensure full motor protection during operation. Starting must be monitored.

The motor is a limiting factor with regard to the tripping delay of the current transformer-operated relay and the bridging period. One must ensure that the motor is able to tolerate the high temperature generated by direct starting, for the prescribed starting time. Motor and starting procedure have to be selected carefully when dealing with machines having a very large rotating mass, which are practically the only ones subject to this problem when direct starting is used.
Depending on the operating conditions adequate protection of the motor winding may no longer be given by an overload relay. In that case it must be weighed up whether an electronic overload relay ZEV, ZEB or a thermistor overload relay EMT 6 in conjunction with an overload relay Z meets the requirements.
Example circuits → page 8-10
All about Motors

Motor protection

Star-delta switch (\(\text{\(\end{equation}} \text{\(\Delta \)} \))

1 operating direction

Changeover time with overload relay in position

A: \(< 15 \text{ s}\)

B: \(> 15 < 40 \text{ s}\)

C: \(> 40 \text{ s}\)

![Star-delta switch diagram]

Setting of the overload relay

\[0.58 \times I_e \]

Full motor protection in \(\text{\(\end{equation}} \text{\(\star \)} \) (star) position

\[1 \times I_e \]

Only partial motor protection in \(\text{\(\end{equation}} \text{\(\vartriangle \)} \) position

\[0.58 \times I_e \]

Motor not protected in \(\text{\(\end{equation}} \text{\(\vartriangle \)} \) position

Multi-speed switches

2 speeds
One tapped winding

3 speeds
1 x tapped winding + 1 winding

![Multi-speed switches diagram]

Attention must be paid to short-circuit protective device of the overload relays. Separate supply input wirings should be provided if required.
All about Motors

Motor protection

Heavy starting duty

ZW7 current transformer-operated overload relays

- For medium and large motors

Bridging of motor protection during starting

- For small motors; no protection during starting

Bridging during starting using bridging relay

- Automatic cut out of the bridging contactor
Individually compensated motor

\[I_w = I_e \times \cos \varphi \ [A] \]

\[I_b = \sqrt{I_e^2 - I_w^2} \ [A] \]

\[I_c = \frac{P_c \times 10^3}{\sqrt{3} \times U_e} \]

\[I_c = \frac{U_e \times \sqrt{3} \times 2\pi f \times C \times 10^{-6}}{[A]} \]

- \[I_e = \text{Rated motor operational current [A]} \]
- \[I_w = \text{Active current} \]
- \[I_b = \text{Reactive current} \]
- \[I_c = \text{Capacitor-Rated operational current [A]} \]
- \[I_{EM} = \text{Setting current of overload relay [A]} \]
- \[\cos \varphi = \text{Motor power factor} \]
- \[U_e = \text{Rated operational voltage [V]} \]
- \[P_c = \text{Rated capacitor output [kvar]} \]
- \[C = \text{Capacitance of capacitor [\(\mu \)F]} \]

Capacitor connected
to protective conductor terminals

to motor terminals

Setting \(I_{EM} \) of overload relay

\[I_{EM} = 1 \times I_e \]

Capacitor does not relieve loading of cable between contactor and motor.

Capacitor relieves loading of cable between contactor and motor; normal arrangement.
Thermistor overload relays for machine protection

Thermistor overload relays for machine protection are used in conjunction with temperature-dependent semi-conductor resistors (thermistors) for monitoring the temperature of motors, transformers, heaters, gases, oils, bearings etc. Depending on the application, thermistors have positive (PTC thermistors) or negative (NTC thermistors) temperature coefficients. With PTC thermistors the resistance at low temperature is small. From a certain temperature it rises steeply. On the other hand, NTC thermistors have a falling resistance-temperature characteristic, which does not exhibit the pronounced change behaviour of the PTC thermistor characteristic.

Temperature monitoring of electric motors

Thermistor overload relays for machine protection EMT6 comply with the characteristics for the combination of protective devices and PTC sensors to EN 60947-8. They are therefore suitable for monitoring the temperature of series motors.

When designing motor protection, it is necessary to differentiate between stator-critical and rotor-critical motors:

• **Stator-critical**
 Motors whose stator winding reaches the permissible temperature limit quicker than the rotor. The PTC sensor fitted in the stator winding ensures that the stator winding and rotor are adequately protected even with a stalled rotor.

• **Rotor-critical**
 Squirrel-cage motors whose rotor in the event of stalling reaches the permissible temperature limit earlier than the stator winding. The delayed temperature rise in the stator can lead to a delayed tripping of the thermistor overload relay for machine protection. It is therefore advisable to supplement the protection of rotor-critical motors by a conventional overload relay. Three-phase motors above 15 kW are usually rotor-critical.

Overload protection for motors in accordance with IEC 204 and IEC/EN 60204. These standards specify that motors above 2 kW used for frequent starting and stopping should be adequately protected for this type of duty. This can be achieved by fitting temperature sensors. If the temperature sensor is not able to ensure adequate protection with stalled rotors, an overcurrent relay must also be provided.

Generally, where there is frequent starting and stopping of motors, intermittent operation and excessive frequency of operation, the use of overload relays in conjunction with thermistor overload relays is to be recommended. In order to avoid premature tripping out of the overload relay in these operating conditions, it is set higher than the predefined operating current. The overload relay then assumes stalling protection; the thermistor protection monitors the motor winding.
Thermistor overload relays for machine protection can be used in conjunction with up to six PTC sensors to DIN 44081 for direct monitoring of temperatures in Ex e motors compliant with the ATEX directive (94/9 EC). An EC type testing certificate can be provided.

Protection of current and temperature-dependent motor-protective devices

<table>
<thead>
<tr>
<th>Protection of the motor under the following conditions</th>
<th>Using bimetal</th>
<th>Using thermistor</th>
<th>Using bimetal and thermistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overload in continuous operation</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Extended starting and stopping</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Switching to stalled rotor (stator-critical motor)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Switching on stalled rotor (rotor-critical motor)</td>
<td>(+)</td>
<td>(+)</td>
<td>(+)</td>
</tr>
<tr>
<td>Single-phasing</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Intermittent operation</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Excessive operating frequency</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Voltage and frequency fluctuations</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Increased coolant temperature</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Impaired cooling</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ Full protection
(+) Partial protection
− No protection
Three-phase current-automatic starter

Three-phase autotransformer starter with starting resistors

Single or multi-step resistors are connected upstream of the three-phase squirrel-cage motors to reduce the inrush current and the tightening torque.

With single-step starters, the inrush current is approximately three times the rated motor current. With multi-stage starters, the resistors can be so designed that the inrush current is only 1.5 to 2 times the rated motor current, with a very low level of tightening torque.

Three-phase autotransformer starters with starting transformers

This type of starting is preferable where the same tightening torque is to be obtained as with the primary series resistors but the inrush current taken from the mains is to be further reduced. A reduced voltage \(U_a \) (approximately 70% of the rated operating voltage) is supplied to the motor when starting via the starting transformer. Thus, the current taken from the mains is reduced to approximately half the direct inrush current.

Three-phase automatic rotor starters with starting resistors

Resistors are connected in the rotor circuit of the motor to reduce the inrush current of motors with slipring rotors. The current taken from the mains is thus reduced. In contrast to stator resistance starters, the torque of the motor is practically proportional to the current taken from the mains. The number of steps of the automatic starter is determined by the maximum permissible inrush current and by the type of the motor.

I: Line current

\(M_d \): Torque

n: Speed

1. Reduction of the line current
2. Reduction of the torque
Important data and features of three-phase automatic starters

<table>
<thead>
<tr>
<th>1) Type of starter</th>
<th>Stator resistance starter (for squirrel-cage motors)</th>
<th>Rotor starter (for slipring rotors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Part no. of starter</td>
<td>Star-delta switches</td>
<td>Rotor resistance starter</td>
</tr>
<tr>
<td>3) Number of starting stages</td>
<td>1 only</td>
<td>Normally 1</td>
</tr>
<tr>
<td>4) Voltage reduction at the motor</td>
<td>0.58 x rated operational voltage</td>
<td>Selectable: a x rated operational voltage (a < 1) e.g. 0.58 as with ∆-Δ-switch</td>
</tr>
<tr>
<td>5) Inrush current taken from mains</td>
<td>0.33 x inrush current at rated operational voltage</td>
<td>a x inrush current at rated operational voltage</td>
</tr>
<tr>
<td>5a) Inrush current at the motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Starting torque</td>
<td>0.33 x tightening torque at rated operational voltage</td>
<td>a² x tightening torque at rated operational voltage</td>
</tr>
<tr>
<td>7) Current and torque reduction</td>
<td>Proportional</td>
<td>Current reduction less than torque reduction</td>
</tr>
<tr>
<td>8) Approximate price (for similar data)</td>
<td>150 – 300</td>
<td>350 – 500</td>
</tr>
</tbody>
</table>

Notes on engineering
Switching of capacitors

DIL contactors for capacitors – individual switching

Individual compensation

When capacitors are switched on, contactors are heavily stressed by transient current peaks. When a single capacitor is switched on, currents up to 30 times the rated operational current can occur; these can, however, be reliably switched by Eaton DIL contactors.

When installing capacitors, the VDE specification 0560 part 4 (Germany) and the standards which apply to each country should be observed. According to these, capacitors not directly connected to an electrical device which forms a discharge circuit, should be equipped with a rigidly connected discharge device. Capacitors connected in parallel to the motor do not require a discharge device, since discharging is performed via the motor winding. No switch-disconnectors or fuses must be installed between the discharge circuit and the capacitor.

A discharge circuit or discharge device must reduce the residual voltage of the capacitor to less than 50 V within a minute of the capacitor being switched off.
In the case of group compensation where capacitors are connected in parallel, it must be noted that the charging current is taken not only from the mains but also from the capacitors connected in parallel. This produces inrush current peaks which can exceed 150 times the rated operational current. A further reason for these peak currents is the use of low-loss capacitors as well as the compact construction, with short connecting elements between contactor and capacitor.

Where standard contactors are used, there is danger of welding. Special contactors for capacitors such as those available from Eaton in the DILK... range which can control inrush current peaks of up to 180 times the rated current, should be used here.

If no special contactors are available, the inrush currents can be damped by additional inductance’s. This is achieved either by longer input wirings to the capacitors or by inserting an air-cored coil with a minimum induction of approximately 6 μH (5 windings, diameter of the coil approximately 14 cm) between contactor and capacitor. The use of series resistors is another way of reducing high inrush currents.

Use of reactors

Frequently the capacitors in group compensation are provided with reactors to avoid harmonics. The reactors also act to limit the inrush current and normal contactor can be used.
Circuit documents serve to explain the function of circuits or electrical connections. They provide information for the construction, installation and maintenance of electrical installations. The supplier and the operator must agree on the form in which the circuit documents are to be produced: paper, film, diskette, etc. They must also agree on the language or languages in which the documentation is to be produced. In the case of machines, user information must be written in the official language of the country of use to comply with ISO 12100.

The circuit documents are divided into two groups:

Classification according to the purpose

Explanation of the mode of operation, the connections or the physical position of the apparatus. This consists of:

- Explanatory circuit diagrams,
- Block diagrams,
- Equivalent circuit diagrams,
- Explanatory tables or diagrams,
- Flow diagrams, tables
- Time flow diagrams, tables
- Wiring diagrams,
- Device wiring diagrams,
- Interconnection diagrams,
- Terminal diagrams,
- Assignment diagrams.

Classification according to the type of representation

Simplified or detailed:

- 1-pole or multi-pole representation,
- Connected, semi-connected or separate representation,
- Topographical representation.

In addition to this, there is the process-orientated representation with the function block diagram (see previous pages).

Examples for drawing up circuit documents are given in IEC/EN 61082-1.

Circuit diagrams

Diagrams indicate the voltage-free or current-free status of the electrical installation. A distinction is drawn between:

- Block diagram. Simplified representation of a circuit with its main parts. It shows how the electrical installation works and how it is subdivided.
- Circuit diagram. Detailed representation of a circuit with its individual components, which shows how the electrical installation works.
- Equivalent circuit diagram. Special version of an explanatory circuit diagram for the analysis and calculation of circuit characteristics.
Wiring diagrams show the conductive connections between electrical apparatus. They show the internal and/or external connections but, in general, do not give any information on the mode of operation. Instead of wiring diagrams, wiring tables can also be used.

- **Unit wiring diagram.** Representation of all the connections within the device or combination of devices.
- **Interconnection diagram.** Representation of the connections between the device or combination of devices within an installation.
- **Terminal diagram.** Representation of the connection points of an electrical installation and the internal and external conductive connections connected to them.
- **Location diagram (location diagram).** Representation of the physical position of the electrical apparatus, which does not have to be to scale.

You will find notes on the marking of electrical apparatus in the diagram as well as further diagram details in the chapter “Specifications, Formulae, Tables”.

Circuit diagram: 1-pole and 3-pole representation
All about Motors
Power supply

4-conductor system, TN-C-S

Overcurrent protective device is required in the input wiring for compliance to IEC/EN 60204-1

5-conductor system, TN-S

Overcurrent protective device is required in the input wiring for compliance to IEC/EN 60204-1
All about Motors
Power supply

3-conductor system, IT

Overcurrent protective device is required in the input wiring for compliance to IEC/EN 60204-1
For all systems: use the N neutral conductor

Separate primary and secondary protection
Grounded circuit. In non-grounded circuit, remove link and provide insulation monitoring.
Combined primary and secondary protection

Grounded circuit. In non-grounded circuit, remove link and provide insulation monitoring.

Maximum ratio of $\frac{U_1}{U_2} = 1/1.73$

Circuit not to be used with STI/STZ (safety or isolating transformers).
All about Motors
Control circuit supply

Separate primary and secondary protection, with insulation monitoring on the secondary side

1. Clear button
2. Test button

DC power supply with three-phase bridge rectifier
All about Motors

Contactor markings

The contactors in contactor combinations have, in accordance with EN 81346-2 for apparatus and function, the code letter Q, as well as numerical identification, which shows the function of the device (e.g. Q22 = mains contactor with anticlockwise operation for high speed).

With contactor combinations which are made up of several basic types, the basic type is always maintained. Thus, the circuit diagram for a reversing star-delta starter, for example, is formed by combining the basic circuit of the reversing contactor and that of the standard star-delta starter.

Other marking of electrical apparatus:
- for the IEC world → page 10-2
- for North America → page 9-14
All about Motors

Direct-on-line start of three-phase motors

Typical circuits with DIL contactors

Fuseless without overload relay

Short-circuit protection\(^1\) and overload protection by means of PKZM motor-protective circuit-breaker or NZM circuit-breaker.

Fuses with overload relay

Short-circuit protection\(^2\) for contactor and overload relay by means of fuses F1.

Short-circuit protection\(^3\) for contactor by means of fuses F1.

1) Protective device in the input wiring in accordance with the main catalogue, Industrial Switchgear or IL installation instructions.

2) Fuse size in accordance with data on the rating plate of the overload relay.

3) Fuse size in accordance with the main catalogue, Industrial Switchgear (Technical data for contactors)
Typical circuit with bridging of overload relay during starting

Without overload relay

With overload relay

Control circuit device

I: ON
0: OFF

For connection of further actuators

→ Section “Three-wire control”, page 8-34

Method of operation: Actuation of pushbutton I energizes the coil of contactor Q11. The contactor switches on the motor and maintains itself after the button is enabled via its own auxiliary contact Q11/14-13 and pushbutton 0 (three-wire control contact). Contactor Q11 is de-energized, in the normal course of events, by actuation of pushbutton 0. In the event of an overload, it is de-energized via the normally closed contact 95-96 on the overload relay F2. The coil current is interrupted, and contactor Q11 switches the motor off.
Application on drive motors with heavy starting duty

For connection when used with motor-protective circuit-breakers PKZM..., PKE and circuit-breakers NZM(H)... → Section “Fuses with overload relays”, page 8-30
Function

Actuation of pushbutton I energizes bridging contactor Q14 which then maintains itself via Q14/13-14. At the same time, voltage is applied to the timing relay K1. The mains contactor Q11 is closed by Q14/44-43 and maintains itself via Q11/14-13. When the set time – which corresponds to the start-up time of the motor - has elapsed, the bridging contactor Q14 is disconnected by K1/16-15. K1 is likewise disconnected and, exactly as Q14, can only be energized again after the motor has been switched off by pressing pushbutton 0. The N/C Q11/22-21 prevents Q14 and K1 closing whilst the motor is running. In the event of an overload, normally closed contact 95-96 on the overload relay F2 effects de-energization.
All about Motors
Direct-on-line start of three-phase motors

2 operating directions, DIUL reversing contactor

Fuseless without overload relay
Short-circuit protective device and overload protection by means of motor-protective circuit-breaker PKZM, PKE or circuit-breaker NZM.
Fuse size in the input wiring in accordance with the main catalogue, Industrial Switchgear or AWA installation instructions.

Fuses with overload relays
Short-circuit protection for contactor and overload relay by means of fuses F1.
Short-circuit protection for contactor by means of fuses F1.

1) Fuse size in accordance with data on the rating plate of the overload relay F2
All about Motors
Direct-on-line start of three-phase motors

Changing direction of rotation after actuation of the 0 pushbutton

Changing direction of rotation without actuation of the 0 pushbutton

Q11: Mains contactor, clockwise
Q12: Mains contactor, anticlockwise operation

Control circuit device
(three-way pushbutton)
I = Clockwise
0 = Stop
II = anticlockwise operation
All about Motors
Direct-on-line start of three-phase motors

Method of operation: Actuation of pushbutton I energizes the coil of contactor Q11. It switches on the motor running clockwise and maintains itself after button I is enabled via its own auxiliary contact Q11/14-13 and pushbutton 0 (three-wire control). The normally closed contact Q11/22-21 electrically inhibits the closing of contactor Q12. When pushbutton II is pressed, contactor Q12 closes (motor running anticlockwise). Depending on the circuit, direction can be changed from clockwise to anticlockwise either after pressing pushbutton 0, or by directly pressing the pushbutton for the reverse direction. In the event of an overload, normally closed contact 95-96 of the overload relay F2 or the normally open contact 13-14 of the motor-protective circuit-breaker or the circuit-breaker will switch.

Operating direction and two speeds (reversing contactor)

Special circuit (tapped winding) for feed drives, etc.
FORWARD: feed or high-speed
RETRACT: high-speed only
STOP: tapped winding
All about Motors
Direct-on-line start of three-phase motors

Method of operation: Forward travel is initiated by pressing pushbutton I or II according to the speed required. Pushbutton I switches on the feed motion via Q17. Q17 maintains itself via its N/O 13-14. If the feed movement is to occur at high-speed star contactor Q23 is energized via pushbutton II which energizes the high speed contactor Q21 via its N/O Q23/13-14. Both of the contactors are maintained via Q21/13-14. A direct switch over from feed to high-speed during the process is possible.

High-speed reverse is initiated by pushbutton III. Contactor relay K1 picks up and energizes star contactor Q23 via K1/14-13. High-speed contactor Q22 is energized via normally open contacts K1/43-44 and Q23/44-43, and is maintained via Q22/14-13. The reverse motion can only be stopped via pushbutton 0. Direct changeover/reversal is not possible.

0: Stop
I: Low speed – FORWARD (Q17)
II: High speed – FORWARD (Q21 + Q23)
III: High speed – BACK (Q22 + Q23)

Q17: Feed forward
Q21: High-speed forward
Q23: Star contactor
K1: Contactor relay
Q22: Retract high-speed
All about Motors
Control circuit devices for direct-on-line start

Typical example of circuits with contactors DILM...

Three-wire control

Illuminated pushbutton actuators

Two double actuator pushbuttons

Double actuator pushbutton with indicator light

T0-1-15511 spring-return switch with automatic return to position 1

T0-1-15366 spring-return switch with automatic return to position of rest

Two-wire control

Changeover switch T0-1-15521 with fleeting contact in the intermediate position

MCS pressure switches
Star-delta switching of three-phase motors

Arrangement in the motor line
In a standard circuit configuration, the star-delta switch with overload relay, i.e. a thermally delayed overcurrent relay, is installed in the cables leading to the motor terminals U1, V1, W1 or V2, W2, U2. The overload relay can also be operated in a star circuit as it is usually connected in series with the motor winding and the relay current flowing through it = rated motor current x 0.58.

The complete circuit diagram → Section “Automatic star-delta switches SDAINL”, page 8-37.

Arrangement in the mains supply line
Instead of the arrangement in the motor line, the overload relay can be placed in the mains supply line. The section shown here indicates how the circuit diagram differs from that on → Section “Automatic star-delta switches SDAINL”, page 8-37.

For drives where the F2 relay trips out when the motor is starting in the star connection, the F2 relay rated for the rated motor current can be switched in the mains line. The tripping delay is thus increased by approximately four to six times. In the star connection, the current also flows through the relay but here the relay does not offer full protection since its limit current is increased to 1.73 times the phase current. It does, however, offer protection against non-starting.
Configuration in the delta connection

Instead of the arrangement in the motor line or mains supply line, the overload relay can be placed in the delta connection. The cutout shown here indicates the modified circuit diagram from Section “Automatic star-delta switches SDAINL”, page 8-37. When heavy, long-starting procedures are involved (e.g. for centrifuges) the F0.58 relay, rated for relay current = rated motor current x 2, can also be connected in the connecting cables between the delta contactor Q15 and the star contactor Q13. In the star connection no current then flows through the F2 relay. The motor is therefore not protected when starting. This connection is always used when exceptionally heavy and long starting procedures are involved and when saturable core current transformer-operated relays react too quickly.
All about Motors

Star-delta switching of three-phase motors

Automatic star-delta switches SDAINL

Arrangement and rating of protective devices

<table>
<thead>
<tr>
<th>Position A</th>
<th>Position B</th>
</tr>
</thead>
</table>
| F2 = 0.58 \times I_e
with F1 in position B \(t_a \leq 15 \text{ s}\) | Q1 = I_e
\(t_a > 15 – 40 \text{ s}\) |
| Motor protection in \(\wedge\)- and \(\Delta\)-configuration | Only partial motor protection in \(\wedge\)-configuration |

Rating of switchgear

- Q11, Q15 = 0.58 \times I_e
- Q13 = 0.33 \times I_e
Further notes on the configuration of the overload relay → Section "Automatic star-delta switches SDAINL", page 8-37

SDAINLM12 to SDAINLM55

Pushbutton
K1: Timing relay approx. 10 s
Q11: Mains contactor
Q13: Star contactor
Q15: Delta contactor
Double pushbutton

Function
Pushbutton I energizes timing relay K1. The normally open contact K1/17-18 (instantaneous contact) which applies voltage to star contactor Q13, which closes and applies voltage to mains contactor Q11 via normally open contact Q13/14-13.

Q11 and Q13 maintain themselves via the N/O Q11/44-43. Q11 applies mains voltage to motor M1 in star connection.

SDAINLM70 to SDAINLM260
All about Motors
Star-delta switching of three-phase motors

SDAINLM12 to SDAINLM260
Two-wire control

<table>
<thead>
<tr>
<th>I = ON</th>
<th>0 = OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the set changeover time has elapsed, K1/17-18 opens the circuit of Q13 and after 50 ms closes the circuit of Q15 via K1/17-28. Star contactor Q13 drops out. Delta contactor Q15 closes and switches motor M1 to full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13 thus interlocking against renewed switching on while the motor is running.

The motor cannot start up again unless it has previously been disconnected by pushbutton 0, or in the event of an overload by the normally closed contact 95-96 of overload relay F2, or via normally open contact 13-14 of the motor-protective circuit-breaker or standard circuit-breaker.
All about Motors
Star-delta switching of three-phase motors

Automatic star-delta switches SDAINL EM
Pushbutton actuators
Maintained contact sensors

K1: Timing relay approx. 10 s
Q11: Mains contactor
Q13: Star contactor
Q15: Delta contactor

Double pushbutton
Control circuit device
I = ON
0 = OFF
For connection of further control circuit devices → Section “Control circuit devices for star-delta starting”, page 8-45

Function
Pushbutton I energizes star contactor Q13, the normally open contact Q13/14-13 applies voltage to mains contactor Q11. Q11 closes and applies mains voltage to motor M1 in star connection. Q11 and Q13 maintain themselves via normally open contact Q11/14-13 and Q11 additionally via Q11/44-43 and pushbutton 0. Timing relay Q11 is energized at the same time as mains contactor K1. When the set changeover time has elapsed, K1 opens the circuit of Q13 via the changeover contact 15-16 and closes the circuit of Q15 via 15-18.

Delta contactor Q15 closes and switches motor M1 to full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13 thus interlocking against renewed switching on while the motor is running.

The motor cannot be started up again unless it has previously been disconnected by pushbutton 0, or in the event of an overload, by the normally closed contact 95-96 of the overload relay F2, or via the normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker.
All about Motors

Star-delta switching of three-phase motors

Automatic reversing star-delta switches

2 operating directions

![Diagram of automatic reversing star-delta switches]

Rating of switchgear

- Q11, Q12: I_e
- F2, Q15: $0.58 \times I_e$
- Q13: $0.33 \times I_e$

The maximum motor output is limited by the upstream reversing contactor, and is lower than with automatic star-delta switches for only one direction of operating direction.

Standard version: Relay current = motor rated operational current $\times 0.58$

For other arrangements of overload relay → Section “Star-delta switch with overload relay”, page 8-35
All about Motors
Star-delta switching of three-phase motors

Changing direction of rotation after actuation of the 0 pushbutton

Three-way pushbutton

Control circuit devices

I = clockwise
0 = Stop
II = anticlockwise operation
For connection of further actuators

Section "Control circuit devices for star-delta starting", page 8-45

Function

Pushbutton I energizes contactor Q11 (e.g. clockwise). Pushbutton II energizes contactor Q12 (e.g. anticlockwise operation). The contactor first energized applies voltage to the motor winding and maintains itself via its own auxiliary contact 14-13 and pushbutton 0. The normally open contact 44-43 fitted to each mains contactor energizes the star contactor Q13. Q13 energizes and switches on motor M1 in the star connection. At the same time, timing relay K1 is triggered. When the set changeover time has elapsed, K1/17-18 opens the circuit of Q13.

Delta contactor Q15 energizes and switches motor M1 to the delta configuration, i.e. full mains voltage. At the same time, normally closed contact Q15/22-21 interrupts the circuit of Q13, thus interlocking against renewed switching on while the motor is running. Motor direction can be changed, either after pressing pushbutton 0, or by direct actuation of the reverse button, depending upon the circuit. In the event of an overload, disconnection is effected by the normally closed contact 95-96 of the overload relay F2.
All about Motors
Control circuit devices for star-delta starting

Automatic star-delta switches

Pulse encoder

Illuminated pushbutton actuators

Two double actuator pushbuttons

Double actuator pushbutton with indicator light

Spring-return switch T0-1-15511 with automatic return to position 1.

Spring-return switch T0-1-15366 with automatic return to position of rest.

Two-wire control

Changeover switch T0-1-15521 with fleeting contact in the intermediate position

E.g. selector switch
Cam switch T
LS position switches
MCS pressure switches
All about Motors
Control circuit devices for star-delta starting

Three-phase current-reversing contactor-reversing star-delta switch

Two-way pushbutton\(^1\) without self-maintaining circuit (inching) for use only with reversing contactors

Three-way pushbutton with indicator light. Reversing after actuation of pushbutton 0

Spring-return switch\(^1\)
T0-1-8214, without self-maintaining circuit (inching) automatic return to off position only for reversing contactors

Changeover switch\(^1\)
Switch T0-1-8210 remains in position 1 or 2

Spring-return switch
T0-2-8177 with automatic return to position 1 or 2

Limit switch
Connected by removing the links between the contactor terminals Q11/13 and Q12/22 and between Q12/13 and Q11/22 and interposing the position switches.

\(^1\) Overload relays always with reclosing lockout
All about Motors
Pole-changing motors

The speed is determined by the number of poles on three-phase asynchronous motors. Several speeds can be obtained by altering the number of poles. The usual types are:

<table>
<thead>
<tr>
<th>Speeds</th>
<th>Type of connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>two speeds 1:2</td>
<td>1 convertible tapped winding</td>
</tr>
<tr>
<td>2 speeds as required</td>
<td>2 separate windings</td>
</tr>
<tr>
<td>three speeds</td>
<td>1 convertible tapped winding 1:2, a separate winding</td>
</tr>
<tr>
<td>four speeds</td>
<td>2 convertible tapped windings 1:2</td>
</tr>
<tr>
<td>two speeds</td>
<td>Tapped winding</td>
</tr>
</tbody>
</table>

The various tapped winding configurations give differential output ratios for the two speeds.

Type of connection \(\Delta / \bigtriangleup \bigtriangleup \bigtriangleup \)
Output ratio 1/1.5–1.8 0.3/1

The \(\Delta / \bigtriangleup \bigtriangleup \bigtriangleup \)-connection comes nearest to satisfying the most usual requirement for constant torque. It has the additional advantage that, because nine terminals are available, y/d starting can be used to provide smooth starting or to reduce the starting current for the low speed condition (→ Section “Motor windings”, page 8-50).

The \(\bigtriangleup / \bigtriangleup \bigtriangleup \) -connection preferred for better matching of the motor to machines in which the torque increases by a quadratic factor (pumps, fans, rotary compressors). All multi-speed switches can be used for both types of connection.

2 speeds – separate windings
In theory, motors with separate windings allow any combination of speed and any output ratio. Both windings are arranged in y connection and are completely independent of one another. Preferred speed combinations are:

<table>
<thead>
<tr>
<th>Motors with tapped winding</th>
<th>1500/3000</th>
<th>–</th>
<th>750/1500</th>
<th>500/1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motors with separate windings</td>
<td>–</td>
<td>1000/1500</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>No. of poles</td>
<td>4/2</td>
<td>6/4</td>
<td>8/4</td>
<td>12/6</td>
</tr>
<tr>
<td>Code no. low/high</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

The code numbers are prefixed to the main notations to denote increasing speed.

Example: 1U, 1V, 1W, 2U, 2V, 2W
Comparable to EN 60034-8
Motor circuit

Connection A
Selection of low and high speed only from zero. No return to low speed, only to zero.

Connection B
Selection of either speed from zero. Switching from low to high speed possible. Return only to zero.

Connection C
Selection of either speed from zero. Switching back and forward between low and high speed (high braking torque). Return also to zero.

Three speeds
The 1:2 - speeds tapped windings are supplemented by the speed of the separate winding. This speed can be below, between or above the two tapped winding speeds. The connection must consider it (Figure, page 8-78).

Preferred speed combinations are:

<table>
<thead>
<tr>
<th>Speeds</th>
<th>1000/1500/3000</th>
<th>750/1000/1500</th>
<th>750/1500/3000</th>
<th>= separate winding (in the circuit diagrams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of poles</td>
<td>6/4/2</td>
<td>8/6/4</td>
<td>8/4/2</td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>
Motor circuit

Connection A
Selection of any speed only from zero. Return only to zero.

Connection B
Selection of any speed from zero and from low speed. Return only to zero.

Connection C
Selection of any speed from zero and from low speed. Return to low speed (high braking torque) or to zero.

Four speeds
The 1:2-speeds tapped windings can follow in sequence or overlap, as the following examples show:

<table>
<thead>
<tr>
<th>1st winding</th>
<th>2nd winding</th>
<th>3rd speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>500/1000</td>
<td>1500/3000</td>
<td>500/1000</td>
</tr>
<tr>
<td>or</td>
<td></td>
<td>1500/3000</td>
</tr>
</tbody>
</table>

For motors having 3 or 4 speeds the non-connected winding has to be opened at certain pole ratios to avoid inductive circulating currents. This is achieved via additional motor terminals. A series of cam switches is equipped with this connection (→ Section “Multi-Speed Switches”, page 4-7).
Motor windings

Tapped winding
2 speeds

<table>
<thead>
<tr>
<th>Low speed \bigtriangleup</th>
<th>Low speed $\bigtriangleup\bigtriangledown$</th>
<th>Low speed $\bigtriangleup\bigtriangleup$</th>
<th>Low speed $\bigtriangleup\bigtriangleup\bigtriangleup$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→ Figure, page 8-55

![Diagram](image5)

→ Figure, page 8-55

→ Figure, page 8-59

Motor circuit
2 speeds
2 separate windings

→ Figure, page 8-68
All about Motors
Motor windings

Tapped winding
3 speeds

Motor circuit X
2 windings, medium and high speed – tapped winding

Motor circuit Y
2 windings, low and high speed – tapped winding

Motor circuit Z
2 windings, low and medium speed – tapped winding

Low speed
Separate winding
1

Medium speed
Separate winding
1

High speed
Separate winding
1

→ Figure, page 8-77
→ Figure, page 8-79
→ Figure, page 8-81
Certain operating sequences for pole-changing motors may be necessary, or undesirable, depending on the nature of the drive. If, for example, the starting temperature rise is to be reduced or high inertia loads are to be accelerated, it is advisable to switch to low speed first and then to high speed.

It may be necessary to prevent switching from high to low speed in order to avoid oversynchronous braking. In other cases, it should be possible to switch each speed on and off directly. The operating sequence and indexing facilities of cam switches allow for these possibilities. Multi-speed contactor switches can achieve these connecting by interlocking with suitable control circuit devices.

Fuse protection of the overload relays

When a common fuse is used in the input wiring, it must not be larger than the back-up fuses specified on the nameplate of either overload relay, otherwise each relay must be protected by its own back-up fuse, as shown in the diagram.
Pole-changing motors can be protected against short-circuits and overloads by motor-protective circuit-breakers PKZ/PKE or circuit-breakers NZM. These provide all the advantages of a fuseless circuit. Normally, the fuse in input wiring protects the switches from welding.
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, 1 operating direction, 2 speeds

Multi-speed contactors
Fuseless, without overload relay, with
motor-protective circuit-breaker or
circuit-breaker.

→ Section “Motor windings”, page 8-50

Synchronous speeds
One multi-speed winding
All about Motors
Multi-speed switch for three-phase motors

<table>
<thead>
<tr>
<th>Motor terminals</th>
<th>1U, 1V, 1W</th>
<th>2U, 2V, 2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of poles</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>rpm</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>rpm</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>rpm</td>
<td>1500</td>
<td>3000</td>
</tr>
<tr>
<td>Contactors</td>
<td>Q17</td>
<td>Q21, Q23</td>
</tr>
</tbody>
</table>

Rating of switchgear
Q2, Q17: I_1 (low speed)
Q1, Q21: I_2 (high speed)
Q23: $0.5 \times I_2$
All about Motors
Multi-speed switch for three-phase motors

Connection A (Figure, page 8-49)
1 three-way pushbutton

For connection of further actuators
Figure, page 8-63, Figure, page 8-64, Figure, page 8-65

Function

Speed can be changed either after pressing pushbutton 0 (connection A) or directly by pressing the appropriate pushbutton (connection C), depending upon the circuit. The motor can be switched off either by pressing pushbutton 0, or in the event of an overload, by N/O 13-14 of the circuit-breaker.
All about Motors
Multi-speed switch for three-phase motors

Connection C (→ Figure, page 8-49)
1 three-way pushbutton

Three-way pushbutton
I: Low speed (Q17)
0: Stop
II: High speed (Q21 + Q23)

Q17: Mains contactor, low speed
Q23: Star contactor
Q21: Mains contactor, high speed

For connection of further actuators
→ Figure, page 8-66
All about Motors
Multi-speed switch for three-phase motors

2 separate windings, an operating direction, 2 speeds

Multi-speed contactor, fuseless without overload relay

Rating of switchgear
Q1, Q17 = I₁ (low speed)
Q2, Q21 = I₂ (high speed)

Motor windings → Section "Motor windings", page 8-50
All about Motors
Multi-speed switch for three-phase motors

2 separate windings, an operating direction, 2 speeds
Multi-speed contactor with fuses and overload relay

Fuse size in accordance with data on the nameplate of the overload relays F2 and F21. If overload relays F2 and F21 cannot be protected by a common fuse, then use connection → Figure, page 8-53.

Motor windings → Section ”Motor windings”, page 8-50
All about Motors
Multi-speed switch for three-phase motors

Connection A (→ Figure, page 8-49)
1 three-way pushbutton

Connection C (→ Figure, page 8-49)
1 three-way pushbutton

Q17: Mains contactor, low speed
Q21: Mains contactor, high speed

Three-way pushbutton

I: Low speed (Q17)
0: Stop
II: High speed (Q21 + Q23)

For connection of further actuators
→ Figure, page 8-67
All about Motors
Multi-speed switch for three-phase motors

Operating principle
Actuation of pushbutton I energizes the coil of contactor Q17. Q17 switches on the low speed of the motor and after pushbutton I is released, maintains itself via its auxiliary contact 13-14 and pushbutton 0.

Speed can be changed either after pressing pushbutton 0, or directly by pressing the appropriate pushbutton, depending upon the connection. The motor is switched off either by pressing pushbutton 0, or in the event of an overload, by normally closed contact 95-96 of overload relays F2 and F21.
All about Motors
Control circuit devices for multi-speed contactors

2 separate windings, an operating direction, 2 speeds

Connection A (→ Figure, page 8-49)
One three-way pushbutton with indicator lights

Control circuit devices
I : Low speed (Q17)
0: Stop
II : High speed (Q21)
All about Motors
Control circuit devices for multi-speed contactors

Connection A (→ Figure, page 8-49)
2 three-way pushbuttons

Control circuit devices
I: Low speed (Q17)
O: Stop
II: High speed (Q21)
Remove existing links and rewire
All about Motors
Control circuit devices for multi-speed contactors

Connection A (Figure, page 8-49)
T0-1-8210 changeover switch
Always set overload relay to manual reset

Connection B (Figure, page 8-49)
1 three-way pushbutton
All about Motors
Control circuit devices for multi-speed contactors

Connection B (Figure, page 8-49)
2 three-way pushbuttons

Control circuit device for connection B
All about Motors
Control circuit devices for multi-speed contactors

Connection C (→ Figure, page 8-49)
2 three-way pushbuttons

Control circuit device for connection C
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, 1 operating direction, 2 speeds

Multi-speed contactor
Star-delta startup at low speed

Fuseless
Without overload relay

Rating of switchgear
Q1, Q17 = I₁
(low speed)
Q2, Q21 = I₂
(high speed)
Q19, Q23 = 0.5 x I₂
All about Motors
Multi-speed switch for three-phase motors

With fuses and overload relays

Rating of switchgear
F2, Q17 = I₁
(low speed)
F21, Q21 = I₂
(high speed)
Q19, Q23 = 0.5 x I₂
F1 = I₂

Overload relays F2 and F21 are not used on multi-speed contactors without motor protection. If F2 and F21 cannot be protected by a common fuse, then use connection on → Figure, page 8-53.

Motor windings → Section “Motor windings”, page 8-50
All about Motors
Multi-speed switch for three-phase motors

Function
Actuation of pushbutton I energizes the coil of star contactor Q23. Its N/O 13-14 energizes the coil of contactor Q17. The motor runs in star at low speed. The contactors are maintained via auxiliary contact Q17/13-14. At the same time, timing relay K3 is triggered. When the set time has elapsed, K3/15-16 opens the circuit of Q23. Q23 drops out, the coil of delta contactor Q19 is energized and maintains itself via Q19/13-14. The timing relay is de-energized via N/C Q19/32-31. The motor runs in delta at low speed.

Actuation of pushbutton II de-energizes the coil of Q17 and via Q17/22-21 energizes the coil of Q21. This state is maintained by Q21/43-44: The coil of star contactor Q23 is re-energized by normally open contact Q21/14-13. The motor runs at high speed. Pushbutton 0 (= Stop) executes disconnection.

Connection
Low speed selected only from off position, high speed only via low speed without actuation of the Stop button.
Three-way pushbutton
I: Low speed (Q17, Q19)
0: Stop
II: High speed (Q21, Q19, Q23)
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, 2 operating directions, 2 speeds (direction preselected)

Multi-speed contactors
Overload relays F2 and F21 are not used on multi-speed contactors without motor protection.

Rating of switchgear
Q11, Q12 = I₂ (low and high speed)
F2, Q17 = I₁ (low speed)
F1, Q21 = I₂
Q23 = 0.5 x I₂ (high speed)
Function

Contactor Q11 is energized by pressing pushbutton I. Contactor Q11 selects the operating direction, and maintains itself after release of pushbutton I via its auxiliary contact 14-13 and pushbutton 0. Speed-selection buttons III and IV are made operative by Q11/44-43.

Pushbutton III energizes Q17, which maintains itself via its contact 14-13. Pushbutton IV energizes high speed contactors Q23 and Q21. Auxiliary contact Q21/21-22 makes low-speed pushbutton III inoperative. Pushbutton 0 must be pressed before any change in speed or direction.

Control circuit device

0: Stop
I: Forward (Q11)
II: Back (Q12)
III: Slow (Q17)
IV: Fast (Q21 + Q23)

Connection

Change of direction
FORWARD–REVERS E after actuation of Stop button, optionally followed by SLOW–FAST with no return to low speed.
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, 2 operating directions, 2 speeds
(direction and speed selected simultaneously)

Multi-speed contactor
Fuseless without overload relay

Rating of switchgear
Q1, Q17, Q18 = I₁ (low speed)
Q2, Q21, Q22 = I₂
Q23 = 0.5 x I₂ (high speed)
All about Motors

Multi-speed switch for three-phase motors

Multi-speed contactor

With **fuses** and overload relays

Rating of switchgear:

- F2, Q17, Q18 = \(I_1 \) (low speed)
- F21, Q21, Q22 = \(I_2 \)
- Q23 = 0.5 \(I_2 \) (high speed)

Overload relays F2 and F21 are not used on multi-speed contactors without motor protection.
All about Motors
Multi-speed switch for three-phase motors

Connection

Simultaneous selection of direction and speed via one pushbutton. Always operate Stop button before changeover.

Q17: Slow forward
Q18: Slow back
Q21: Fast forward
Q23: Star contactor
K1: Contactor relay
Q22: Fast back
All about Motors
Multi-speed switch for three-phase motors

Function
Desired speed and operating direction can be selected by actuation of one of the four pushbutton. Contactors Q17, Q18, Q21 and Q23 maintain themselves by their contact 14-13 and can be de-energized only by actuation of pushbutton 0. Contactors Q21 and Q22 can maintain themselves only when Q23 has picked up and contact Q23/13-14 or 44-43 is closed.

Five-way pushbutton
Control circuit device
0: Stop
I: Slow forward (Q17)
II: Slow back (Q18)
III: Fast forward (Q21 + Q23)
IV: Fast back (Q22 + Q23)
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, medium and high speed, 1 operating direction, 3 speeds, 2 windings

Multi-speed contactor
Multi-speed contactors with overload relay → Figure, page 8-79

Motor circuit X → Section “Motor circuit X”, page 8-51

Synchronous Speed

<table>
<thead>
<tr>
<th>Winding</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor terminals</td>
<td>1U, 1V, 1W</td>
<td>2U, 2V, 2W</td>
<td>3U, 3V, 3W</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>12</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>RPM</td>
<td>500</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>RPM</td>
<td>750</td>
<td>1500</td>
<td>3000</td>
</tr>
</tbody>
</table>

Amount of poles | 6 | 4 | 2
RPM | 1000 | 1500 | 3000
Contactors | Q11 | Q17 | Q21, Q23

Rating of switchgear

Q2, Q11: \(I_1 \) (low speed)
Q1, Q17: \(I_2 \) (medium speed)
Q3, Q21: \(I_3 \) (high speed)
Q23: 0.5 \(I_3 \)
All about Motors
Multi-speed switch for three-phase motors

Connection of motor winding: X
Connection A

Connection A
Selection of any speed only from zero.
No return to low speed, only to zero.

Connection B
Selection of any speed from zero or from low speed. Return only to zero.

Function
Pushbutton I energizes mains contactor Q17 (low speed), pushbutton II mains contactor Q11 (medium speed), pushbutton III star contactor Q23 and via its N/O Q23/14-13 mains contactor Q21 (high speed). All contactors maintain themselves by their auxiliary contact 13-14.

Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0. In the event of an overload, normally open contact 13-14 of the motor-protective circuit-breaker or circuit-breaker can also switch off.
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, low and high speed, 1 operating direction, 3 speeds, 2 windings

Multi-speed contactor

Multi-speed contactor without overload relay → Figure, page 8-77

Motor circuit Y → Section “Motor circuit Y”, page 8-51

Synchronous Speed

<table>
<thead>
<tr>
<th>Winding</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor terminals</td>
<td>1U, 1V, 1W</td>
<td>2U, 2V, 2W</td>
<td>3U, 3V, 3W</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>12</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>RPM</td>
<td>500</td>
<td>750</td>
<td>1000</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RPM</th>
<th>750</th>
<th>1000</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contactors</td>
<td>Q17</td>
<td>Q11</td>
<td>Q21, Q23</td>
</tr>
</tbody>
</table>

Rating of switchgear

F2, Q17: \(I_1 \) (low speed)
F3, Q11: \(I_2 \) (medium speed)
F4, Q21: \(I_3 \) (high speed)
Q23: 0.5 \(I_3 \)
All about Motors
Multi-speed switch for three-phase motors

Connection of motor winding: Y

Connection A
Selection of any speed only from zero. No return to low speed, only to zero.

Connection B
Selection of any speed from zero or from low speed. Return only to zero. Four-way pushbuttons

0: Stop
I: Low speed (Q17)
II: Medium speed (Q11)
III: High speed (Q21 + Q22)

Q17: Low speed winding 1
Q11: Medium speed winding 1
Q23: High speed winding 1
Q21: High speed winding 2

Function
Pushbutton I energizes mains contactor Q17 (low speed), pushbutton II mains contactor Q11 (medium speed), pushbutton III star contactor Q23 and via its N/O Q23/14-13 mains contactor Q21 (high speed). All contactors maintain themselves by their auxiliary contact 13-14.

Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0. In the event of an overload, normally closed contact 95-96 of overload relays F2, F21 and F22 can also switch off.
All about Motors
Multi-speed switch for three-phase motors

Tapped winding, low and medium speed, 1 operating direction, 3 speeds, 2 windings

Multi-speed contactor
Multi-speed contactor without overload relay

Motor circuit Z → Section “Motor circuit Z”, page 8-51

Figure, page 8-53

Synchronous Speed

<table>
<thead>
<tr>
<th>Winding</th>
<th>2</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor terminals</td>
<td>1U, 1V, 1W</td>
<td>2U, 2V, 2W</td>
<td>3U, 3V, 3W</td>
</tr>
<tr>
<td>Amount of poles</td>
<td>12</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>RPM</td>
<td>500</td>
<td>1000</td>
<td>1500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contactors</th>
<th>Amount of poles</th>
<th>RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q17</td>
<td>8</td>
<td>750</td>
</tr>
<tr>
<td>Q21, Q23</td>
<td>4</td>
<td>1500</td>
</tr>
<tr>
<td>Q11</td>
<td>2</td>
<td>3000</td>
</tr>
</tbody>
</table>

Rating of switchgear

F2, Q17: \(I_1 \) (low speed)
F4, Q21: \(I_2 \) (medium speed)
F3, Q11: \(I_3 \) (high speed)
Q23: \(0.5 \times I_3 \)
All about Motors
Multi-speed switch for three-phase motors

Connection of motor winding: Z
Connection A

Q17: Low speed winding 1
Q23: Medium speed winding 2
Q21: Medium speed winding 2
Q11: High speed winding 1

Function
Pushbutton I energizes mains contactor Q17 (low speed), pushbutton II mains contactor Q23 (low speed) and via its N/O Q23/14-13 mains contactor Q21 (high speed), pushbutton III mains contactor Q11. All contactors maintain themselves by pushbutton I energizes m13n14co.

Connection A
Selection of any speed from zero.
No return to low speed, only to zero.

Connection B
Selection of any speed from zero or from low speed. Return only to zero.

Four-way pushbuttons
0: Stop
I: Low speed (Q17)
II: Medium speed (Q21 + Q23)
III: High speed (Q11)

Speed sequence from low to high is optional. Switching in steps from high to medium or low speed is not possible. The motor is always switched off by pressing pushbutton 0. In the event of an overload, normally closed contact 95-96 of overload relays F2, F21 and F22 can also switch off.
All about Motors
Three-phase autotransformer starter

Three-phase autotransformer starter with mains contactor and resistors, 2-stage, 3-phase version

Use F2 when using F1 instead of Q1.
Rating of switchgear:
Starting voltage: 0.6 x \(U_e \)
Inrush current: 0.6 x direct switching system
Tightening torque: 0.36 x direct switching system
Q1, Q11: \(I_e \)
Q16, Q17: 0.6 x \(I_e \)
All about Motors
Three-phase autotransformer starter

Three-phase autotransformer starter with mains contactor and resistors, 2-stage, 3-phase version

Q16: Step contactor
K1: Timing relay
Q17: Step contactor
Q11: Mains contactor

Two-wire control
Always set overload relay to reclosing lockout
Function
Pushbutton I energizes step contactor Q16 and timing relay K1. Q16/14-13 – self-maintaining through Q11, Q11/32-31 and pushbutton 0. The motor is connected to the supply with upstream resistors R1 + R2. When the set starting time has elapsed, normally open contact K1/15-18 energizes Q17. Step contactor Q17 bypasses the starting stage R1. At the same time, normally open contact Q17/14-13 energizes K2. When the set starting time has elapsed, K2/15-18 energizes mains contactor Q11. This bypasses the second starting stage R2, and the motor runs at the rated speed. Q11 maintains itself via Q11/14-13. Q16, Q17, K1 and K2 are de-energized by normally closed contacts Q11/22-21 and Q11/32-31. The motor is switched off with pushbutton 0. In the event of an overload, normally closed contact 95-96 of the overload relay F2 or normally open contact 13-14 of the motor-protective circuit-breaker switch off the motor.

Step contactor Q17, resistor R2 and timing relay K1 are omitted in single-stage starting circuits. Timing relay K2 is connected directly to Q16/13 and resistor R2 is connected by means of its terminals U1, V1 and W1 to Q11/2, 4, 6.
Three-phase autotransformer starter with mains contactor and starting transformer, 1-stage, 3-phase

Use F2 when using F1 instead of Q1.

<table>
<thead>
<tr>
<th>Starting voltage</th>
<th>= 0.7 x U_e (typical value)</th>
<th>Tightening torque</th>
<th>= 0.49 x Direct switching system</th>
<th>= 0.49 x Direct switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>= 0.49 x direct switching system</td>
<td>Q1, Q11</td>
<td>Q16</td>
<td>= I_e</td>
</tr>
<tr>
<td>I_{Ia}/I_e</td>
<td>= 6</td>
<td></td>
<td>Q13</td>
<td>= 0.6 x I_e</td>
</tr>
<tr>
<td>t_A</td>
<td>= 10 s</td>
<td></td>
<td></td>
<td>= 0.25 x I_e</td>
</tr>
<tr>
<td>ops./h</td>
<td>= 30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Function
Pressing pushbutton I simultaneously energizes star contactor Q13, timing relay K1 and, via normally open contact Q13/13-14, step contactor Q16, and are maintained via K1/13-14. When K1 has elapsed, normally closed contact K1/55-56 de-energizes star contactor Q13, and Q16 – via normally open contact Q13/13-14: The starting transformer is disconnected, and the motor runs at the rated speed.

The motor cannot start up again unless previously switched off by actuation of pushbutton 0, or in the event of an overload, by N/C 95-96 of the overload relay F2. With two-wire control, overload relay F2 must always be set to reclosing lockout. If the motor has been switched off by F2, the motor cannot start up again unless the reclosing lockout is released.
Three-phase automatic rotor starters

3-stage, rotor 3-phase

Use F2 when using F1 instead of Q1.
Use F2 when using F1 instead of Q1.
Rating of switchgear

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush current</td>
<td>$= 0.5 - 2.5 \times I_e$</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>$= 0.5$ to pull-out torque</td>
</tr>
<tr>
<td>Q1, Q11</td>
<td>$= I_e$</td>
</tr>
<tr>
<td>Step contactors</td>
<td>$= 0.35 \times I_{rotor}$</td>
</tr>
<tr>
<td>Final step contactors</td>
<td>$= 0.58 \times I_{rotor}$</td>
</tr>
</tbody>
</table>
All about Motors
Three-phase automatic rotor starters

With mains contactor, style 3-stage, rotor 3-phase

Q11: Mains contactor
K1: Timing relay
Q14: Step contactor
K2: Timing relay
Q12: Step contactor
Q13: Final step contactor
K3: Timing relay

Double pushbutton
I: ON
0: OFF

For connection of further actuators:
→ Section “Control circuit devices for star-delta starting”, page 8-45
Function

Pushbutton I energizes mains contactor Q11: N/O Q11/14-13 transfers the voltage, Q11/44-43 energizes timing relay K1. The motor is connected to the supply system with rotor resistors R1 + R2 + R3 in series. When the set starting time has elapsed, normally open contact K1/15-18 energizes Q14. Step contactor Q14 short-circuits starting stage R1 and via Q14/14-13 energizes timing relay K2. When the set starting time has elapsed, K2/15-18 energizes step contactor Q12, which short-circuits starting stage R2 and via Q12/14-13 energizes timing relay K3. When the set starting time has elapsed, K3/15-18 energizes final step contactor Q13, which is maintained via Q13/14-13. Step contactors Q14 and Q12 as well as timing relays K1, K2 and K3 are de-energized via Q13. Final step contactor Q13 short-circuits the rotor slip rings: the motor operates with rated speed.

The motor is switched off either by pushbutton 0, or in the event of an overload, by N/C 95-96 of the overload relay F2 or N/O 13-14 of the motor-protective circuit-breaker or circuit-breaker.

Step contactors Q13 and/or Q12 with their resistors R3, R2 and timing relays K3, K2 are omitted in single-stage or two-stage starting circuits. The rotor is then connected to the resistance terminals U, V, W2 or U, V, W1. The references for step contactors and timing relays in the wiring diagrams are then changed from Q13, Q12 to Q12, Q11 or to Q13, Q11 as appropriate.

When there are more than three stages, the additional step contactors, timing relays and resistors have appropriate increasing designations.
All about Motors
Switching of capacitors

Contactors for capacitors DIL

Individual circuit without quick-discharge resistors

R1 discharge resistors fitted in capacitor
Maintained contact sensors
In the case of actuation by means of power factor correction relay, check that this has sufficient power to actuate the contactor coil. Interpose a contactor relay if necessary.

Function
Pushbutton I actuates contactor Q11, which picks up and maintains itself via its own auxiliary contact 14-13 and pushbutton 0 on voltage. Capacitor C1 is thus energized. Discharge resistors R1 are not active when contactor Q11 is energized. Actuation of pushbutton 0 effects de-energization. Normally closed contacts Q11/21-22 then switch discharge resistors R1 to capacitor C1.
Switching of capacitors

Capacitor contactor combination

Capacitors contactor with pilot contactor and series resistors. Individual and parallel circuit with and without discharge resistors and with series resistors.

On the version without discharge resistors, resistors R1 and the connections to the auxiliary contacts 21-22 and 31-32 are omitted.
All about Motors
Switching of capacitors

Q11: Mains contactor
Q14: Pilot contactor
Actuation by double pushbutton S11

Function
Actuation by double pushbutton S11:
Pushbutton I energizes pilot contactor Q14. Q14 switches capacitor C1 in with bridged series resistors R2. N/O Q14/14-13 energizes mains contactor Q11. Capacitor C1 is then switched in with bridged series resistors R2. Q14 is maintained via Q11/14-13 when Q11 has closed.

Discharge resistors R1 are not operative when Q11 and Q14 are energized.
Pushbutton 0 effects de-energization. N/C Q11/21-22 and 31-32 then switch discharge resistors R1 to capacitor C1.

Actuation by selector switch S13, two-wire control S12 (power factor correction relay) and double pushbutton S11.

Diagram:

- L1 (Q11/1)
- -F0
- 0E
- S11
- IE
- Q14
- -Q11
- A1
- A2
- A1
- A2
- N

- L1 (Q11/1)
- -F0
- 0E
- S12
- S12
- IE
- -Q11
- A1
- A2
- T0 (3)-1-15431
- 1 0 2
- 3 4
- X
- X

- Q11
- A2
- -Q14
- 13
- 14
- 13
- 14
- A1
All about Motors
Duplex pump control

Fully automatic control for two pumps

Starting sequence of pumps 1 and 2 can be selected by control switch S12.
Control circuit wiring with two float switches for basic and peak loads (operation is also possible with two pressure switches)

P1 Auto = Pump 1 base load, Pump 2 peak load
P2 Auto = Pump 2 base load, Pump 1 peak load
P1 + P2 = Direct operation independent of float switches (or pressure switches)

1. Cable with float, counterweight, pulleys and clamps
2. Storage tank
3. Inlet
4. Pressure pipe
5. Outlet
6. Centrifugal or reciprocating pump
7. Pump 1
8. Pump 2
9. Suction pipe with filter
10. Well

Diagram showing the wiring connections and components for the duplex pump control system.
Function

The duplex pump control is designed for the operation of two pump motors M1 and M2. Control is via float switches F7 and F8. Operating mode selector switch S12 in position P1 auto. The system operates as follows:

- **Float switch F7 closes before F8**
- **Q11: Pump 1 mains contactor**
- **Q12: Pump 2 mains contactor**

When the water level in the storage tank falls or rises, F7 switches pump 1 on or off (base load). If the water level drops below the range of F7 (discharge is greater than intake), F8 starts pump 2 (peak load). When the water level rises again, F8 is deactivated. Pump 2 continues running until F7 stops both pumps.

The operating sequence of pumps 1 and 2 can be determined using operating mode selector switch S12: Position P1 auto or P2 auto.

In position P1 + P2, both pumps are in operation, independent of the float switches (Caution! Tank may possibly overflow).

On the version of duplex pump control with cyclic load sharing (T0(3)-4-15915), S12 has a further state: the operating sequences are automatically reversed after each cycle.
All about Motors
Fully automatic pump control

With pressure switch for air tank and domestic water supply without water failure (run dry) safety device

With 3-pole pressure switch MCSN (main circuit)

F1: Fuses (if required)
Q1: Motor-protective circuit-breaker switch, manual (e.g. PKZ)
F7: Pressure switch MCSN, 3-pole
M1: Pump motor

1. Air or pressure tank
2. Non-return valve
3. Pressure pipe
4. Centrifugal (or reciprocating) pump
5. Suction pipe with filter
6. Well
All about Motors
Fully automatic pump control

With 1 pole pressure switch MCS (control circuit)

F1: Fuses
Q11: Contactor or automatic star-delta switch
F2: Overload relay with reclosing lockout
F7: Pressure switch MCS, 1 pole
M1: Pump motor
① Air or pressure tank
② Non-return valve
③ Centrifugal (or reciprocating) pump
④ Pressure pipe
⑤ Suction pipe with filter
⑥ Well
All about Motors
Fully automatic pump control

With 3-pole float switch SW (main circuit)

F1: Fuses (if required)
Q1: Motor-protective circuit-breakers, manual (e.g. PKZ)
F7: Float switch 3-pole (connection: pump full)
M1: Pump motor
HW: Highest level
NW: Lowest value
① Cable with float, counterweight, pulleys and clamps
② Storage tank
③ Pressure pipe
④ Centrifugal (or reciprocating) pump
⑤ Outlet
⑥ Suction pipe with filter
⑦ Well
All about Motors

Fully automatic pump control

With 1 pole float switch SW (control circuit)

F1: Fuses
Q11: Contactor or automatic star-delta switch
F2: Overload relay with reclosing lockout
F8: Float switch 1 pole (connection: pump full)
S1: Changeover switch
 MANUAL-OFF-AUTO
F9: Float switch 1 pole (connection: pump full)
M1: Pump motor
1. Cable with float, counterweight, pulleys and clamps
2. Storage tank
3. Pressure pipe
4. Centrifugal (or reciprocating) pump
5. Outlet
6. Suction pipe with filter
7. Water-failure monitoring by means of a float switch
8. Well
All about Motors
Fully automatic main transfer switch with automatic release

Changeover device to DIN VDE 0100 – Erection of low-voltage installations
–... – Part 718: Installations for gathering of people
Automatic resetting, the phase monitoring relay is set to:

- Pick-up voltage \(U_{an} = 0.95 \times U_n \)
- Drop-out voltage \(U_b = 0.85 \times U_{an} \)

Function
Main switch Q1 is closed first, followed by main switch Q1.1 (auxiliary supply).
Phase monitor K1 is energized via the main supply and immediately energizes contactor relay K2. N/C K2/21-22 blocks the circuit contactor. Q12 (auxiliary supply) and N/O K2/13-14 closes the circuit of contactor Q11. Contactor Q11 energizes and switches the mains supply on the loads. Contactor Q12 is also interlocked against main supply contactor Q11 via N/C Q11/22-21.